Skip to contents

Print the summarized results of a Monte Carlo Simulation run by future_mc() and summarized by summary.mc()

Usage

# S3 method for summary.mc
print(x, ...)

Arguments

x

An object of class summary.mc

...

ignored

Value

print shows a nice representation of the summarized results of a Monte Carlo Simulation

Examples


test_func <- function(param = 0.1, n = 100, x1 = 1, x2 = 2){

  data <- rnorm(n, mean = param) + x1 + x2
  stat <- mean(data)
  stat_2 <- var(data)

  if (x2 == 5){
    stop("x2 can't be 5!")
  }

  return(list(mean = stat, var = stat_2))
}

param_list <- list(param = seq(from = 0, to = 1, by = 0.5),
                   x1 = 1:2)

set.seed(101)
test_mc <- future_mc(
  fun = test_func,
  repetitions = 1000,
  param_list = param_list,
  n = 10,
  x2 = 2
)
#> Running single test-iteration for each parameter combination...
#> 
#>  Test-run successfull: No errors occurred!
#> Running whole simulation: Overall 6 parameter combinations are simulated ...
#> 
#>  Simulation was successfull!
#>  Running time: 00:00:00.983762

summary(test_mc)
#> Results for the output mean: 
#>    param=0, x1=1: 3.015575 
#>    param=0, x1=2: 4.003162 
#>    param=0.5, x1=1: 3.49393 
#>    param=0.5, x1=2: 4.480855 
#>    param=1, x1=1: 3.985815 
#>    param=1, x1=2: 4.994084 
#>  
#>  
#> Results for the output var: 
#>    param=0, x1=1: 0.9968712 
#>    param=0, x1=2: 1.026523 
#>    param=0.5, x1=1: 0.9933278 
#>    param=0.5, x1=2: 0.9997529 
#>    param=1, x1=1: 0.9979682 
#>    param=1, x1=2: 1.005633 
#>  
#>